From Depth Data to Head Pose Estimation: A Siamese Approach
نویسندگان
چکیده
The correct estimation of the head pose is a problem of the great importance for many applications. For instance, it is an enabling technology in automotive for driver attention monitoring. In this paper, we tackle the pose estimation problem through a deep learning network working in regression manner. Traditional methods usually rely on visual facial features, such as facial landmarks or nose tip position. In contrast, we exploit a Convolutional Neural Network (CNN) to perform head pose estimation directly from depth data. We exploit a Siamese architecture and we propose a novel loss function to improve the learning of the regression network layer. The system has been tested on two public datasets, Biwi Kinect Head Pose and ICT-3DHP database. The reported results demonstrate the improvement in accuracy with respect to current state-of-the-art approaches and the real time capabilities of the overall framework.
منابع مشابه
Camera Pose Estimation in Unknown Environments using a Sequence of Wide-Baseline Monocular Images
In this paper, a feature-based technique for the camera pose estimation in a sequence of wide-baseline images has been proposed. Camera pose estimation is an important issue in many computer vision and robotics applications, such as, augmented reality and visual SLAM. The proposed method can track captured images taken by hand-held camera in room-sized workspaces with maximum scene depth of 3-4...
متن کاملDeep Head Pose Estimation from Depth Data for In-car Automotive Applications
Recently, deep learning approaches have achieved promising results in various fields of computer vision. In this paper, we tackle the problem of head pose estimation through a Convolutional Neural Network (CNN). Differently from other proposals in the literature, the described system is able to work directly and based only on raw depth data. Moreover, the head pose estimation is solved as a reg...
متن کاملHead Pose Estimation on Top of Haar-Like Face Detection: A Study Using the Kinect Sensor
Head pose estimation is a crucial initial task for human face analysis, which is employed in several computer vision systems, such as: facial expression recognition, head gesture recognition, yawn detection, etc. In this work, we propose a frame-based approach to estimate the head pose on top of the Viola and Jones (VJ) Haar-like face detector. Several appearance and depth-based feature types a...
متن کاملFace-from-Depth for Head Pose Estimation on Depth Images
Depth cameras allow to setup reliable solutions for people monitoring and behavior understanding, specially when unstable or poor illumination conditions make unusable common RGB sensors. Therefore, we propose a complete framework for the estimation of the head and shoulder pose based on depth images only. A head detection and localization module is also included, in order to develop a complete...
متن کاملReal Time Head Pose Estimation from Consumer Depth Cameras
We present a system for estimating location and orientation of a person’s head, from depth data acquired by a low quality device. Our approach is based on discriminative random regression forests: ensembles of random trees trained by splitting each node so as to simultaneously reduce the entropy of the class labels distribution and the variance of the head position and orientation. We evaluate ...
متن کامل